Advanced matrix algebra: mxn systems, linear independence, sparse matrices, introduction to second-order tensors. Further ordinary differential equations: systems of ODEs, variation of parameters; boundary-value problems. Fourier series: Euler formulae, convergence, half-range series, solution of ODEs, spectra. Further multivariable calculus: change of variables and chain rule, polar coordinates, line integrals; vector fields; del, divergence, curl and Laplacian; surface and volume integrals; Gauss and Stokes theorems. Partial differential equations: simple PDEs, Laplace, heat and wave equations, superposition, separation of variables, polar coordinates. Advanced numerical methods: solution of linear systems, numerical solution of ODEs and simple PDEs, accuracy, efficiency and stability; discrete Fourier transforms, introduction to PS and FE methods.
Content: The content reflects a close combination of classical and modern and meets the basic needs of engineering graduates from mathematics colleges and universities. Core content includes distance and paradigm, including vector paradigm and matrix paradigm; standard form and eigenvalue computation of matrices, including standard form of Jordan matrices and power iteration method of eigenvalues; matrix decomposition and generalised inverse matrix, including triangular decomposition, full rank decomposition and singular value decomposition; numerical solution of linear equations, including direct and iterative solution; optimisation methods, including the simplex method, the optimality condition method, Newton’s method, the conjugate gradient method, the penalty function method, the simulated annealing algorithm and the genetic algorithm for combinatorial optimisation problems.
问题 1.
1) The characteristic equation is $\lambda^2-2 \lambda+5=0$ with roots $\lambda=\frac{2 \pm \sqrt{4-20}}{2}=\frac{2 \pm 4 i}{2}=1 \pm 2 i$.
a basis for the set of solutions is $y_1=\mathfrak{e}^x \cos (2 x)$ and $y_2=\mathfrak{e}^x \sin (2 x)$ and the general solution is $y=e^x\left(c_1 \cos (2 x)+c_2 \sin (2 x)\right)$. To apply the initial conditions, we will need the derivative: $y^{\prime}=e^x\left(c_1 \cos (2 x)+c_2 \sin (2 x)\right)+e^x\left(-2 c_1 \sin (2 x)+2 c_2 \cos (2 x)\right)$ which we can write as $y^{\prime}=e^x\left(c_1+2 c_2\right) \cos (2 x)+e^x\left(-2 c_1+c_2\right) \sin (2 x)$. Now we can apply the initial conditions: $$ \begin{aligned} & y\left(\frac{\pi}{2}\right)=0 \Longrightarrow e^{\frac{\pi}{2}}\left(c_1 \cos (\pi)+c_2 \sin (\pi)\right)=0 \Longrightarrow e^{\frac{\pi}{2}}\left(-c_1\right)=0 \Longrightarrow c_1=0 . \ & y^{\prime}\left(\frac{\pi}{2}\right)=2 \Longrightarrow e^{\frac{\pi}{2}}\left(c_1+2 c_2\right)(-1)+e^{\frac{\pi}{2}}\left(-2 c_1+c_2\right)(0)=2 \Longrightarrow-2 c_2 e^{\frac{\pi}{2}}=2 \Longrightarrow c_2=-e^{-\frac{\pi}{2}} . \end{aligned} $$ So the (unique) solution to the initial value problem is $y=e^x\left(-e^{-\frac{\pi}{2}} \sin (2 x)\right)=-e^{x-\frac{\pi}{2}} \sin (2 x)$. OR Substitute $y\left(\frac{\pi}{2}\right)=0$ in $y=e^x\left(c_1 \cos (2 x)+c_2 \sin (2 x)\right)$ to get $0=e^{\frac{\pi}{2}}\left(-c_1\right) \Longrightarrow c_1=0$. So at this point, we know that $y=c_2 e^x \sin (2 x)$. Now find the derivative: $y^{\prime}=c_2 e^x \sin (2 x)+2 c_2 e^x \cos (2 x)$ and apply the condition $y^{\prime}\left(\frac{\pi}{2}\right)=2$ to get $2=2 c_2 e^{\frac{\pi}{2}}(-1) \Longrightarrow c_2=-e^{-\frac{\pi}{2}}$ and so the solution to the IVP is $y=-e^{-\frac{\pi}{2}} e^x \sin (2 x)$, as before.
问题 2.
Outer solution: To zeroth order we must have $-y^{\prime}+x y=0$, or $$ \frac{d y}{y}=x d x \quad \Rightarrow \quad \ln y=\frac{1}{2} x^2+c \quad \Rightarrow \quad y=C e^{x^2 / 2} . $$ mpose the left-end boundary condition: $1=y(0)=C$. Thus $$ y_0=e^{x^2 / 2} . $$
Inner solution: Let $z=\frac{x-1}{\epsilon}$, so that $x=1+\epsilon z$ and $z$ is negative inside the interval. Then $\frac{d}{d x}=\frac{1}{\epsilon} \frac{d}{d z}$, so the ODE transforms (after multiplication by $\epsilon$ ) to $$ \frac{d^2 y}{d z^2}-\frac{d y}{d z}+\left(\epsilon+\epsilon^2 z\right) y=0 . $$ o to zeroth order we must have $\left(y^{\prime}\right)^{\prime}-y^{\prime}=0$, so $y^{\prime}=A e^z$, hence $$ y=A e^z+B=A e^{(x-1) / \epsilon}+B . $$ mpose the right-end boundary condition: $0=y(1)=A+B$, so $B=-A$. Thus $$ y_{\mathrm{i}}=A\left[e^{(x-1) / \epsilon}-1\right] . $$ Composite solution: Let $\eta=\sqrt{\epsilon} z=\frac{x-1}{\sqrt{\epsilon}}$. Study the limit $\epsilon \rightarrow 0^{+}$with $\eta$ fixed (and negative). $$ y_{\circ}=e^{(1+\sqrt{\epsilon} \eta)^2 / 2} \rightarrow e^{1 / 2} . $$
$$ y_{\mathrm{i}}=A\left[e^{\eta / \sqrt{\epsilon}}-1\right] \rightarrow-A . $$ Therefore, $A=-\sqrt{\epsilon}$, Construct the uniform, composite solution by adding the two nonuniform solutions and subtracting their common limit, $\sqrt{\epsilon}$ : $$ \begin{aligned} y & \sim y_{\circ}+y_{\mathrm{i}}-\sqrt{e} \ & =e^{x^2 / 2}+\sqrt{e}\left[1-e^{\frac{(x-1)}{\epsilon}}\right]-\sqrt{e} \ & =e^{x^2 / 2}-\sqrt{e} e^{\frac{(x-1)}{\epsilon}} . \end{aligned} $$
学习资料推荐
针对 Advanced engineering mathematics 推荐三本教材:
✅Advanced mathematics for engineering and science
✅Solutions manual for Advanced engineering mathematics 8ed
✅ Instructor’s Manual For Advanced Engineering Mathematics 9th Edition